How to Integrate Sqrt(1 + x^2) and Sqrt(a^2 + x^2)
The first step in integrating sqrt(1 + x^2) is to make the trigonometric substitution x = tan(u) and dx = sec(u)^2 du. Then the integral of sqrt(x^2 + 1) becomes ∫ sqrt(x^2 + 1) dx = ∫ sqrt(tan(u)^2 + 1) * sec(u)^2 du = ∫ sqrt(sec(u)^2) * sec(u)^2 du = ∫ ...